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I. INTRODUCTION

What tasks could a simple LEGO robot ever do?
Equipped with only switch, light, temperature, and
angle sensors it would never be able to do face
recognition, no matter how its control program was
organised. Still, there are a number of simple, yet non-
trivial, tasks that lie within the limits set by the
sensors, such as light following, obstacle detection,
line following, etc. In fact, you might say that the
tasks that a LEGO robot is capable of performing are
tasks you would require as basic skills of a more
sophisticated robot. Such basic skills might form the
lower layers of a Behaviour Based control program
designed for more complex tasks [3]. Hence, they
could be considered fundamental: if the robot can’t do
this, it can’t do anything.

What can you teach a robot by saying only JRRG! and
EDG! to it? This sort of simple, binary training is
immediately comprehensible, even for children, and
the trainer needs no prerequisites. The principle is
incorporated in all learning methodologies in some
form since learning is about choosing one behaviour
instead of another on the grounds of some criterion,
which corresponds to classifying one behaviour as
good and others as bad, in the current situation. With
only this core element and without all other forms of
helpful trainer feedback, the resulting learning scheme
is a kind of ‘back to basics’, following the Animat
Approach: How little is necessary [12]. With less than
this, learning is not possible.

Can a LEGO robot be taught these basic skills through
binary training? In this work, we present a rule-based
learning system for a simulated LEGO robot. During
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binary training the robot forms assumptions about
when to do what, and over time these assumptions
converge more and more into rules. We show that it is
possible to successfully transfer the learned rules to a
physical LEGO robot. The system has been named the
Assumption Architecture.

II. THE ASSUMPTION ARCHITECTURE

In our learning system, a virtual LEGO robot, Mr.
Mind, inhabits a simulator (cf. fig.1). A trainer teaches
him various simple tasks by giving either J (JRRG!),
L (EDG!), or K (JR�RQ). To keep things synchronised,
having taken an action Mr. Mind will wait for trainer
feedback before taking the next action. The KLVWRU\
holds all previous sensor readings, actions taken and
received trainer feedback.
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$�� 6HQVHV

“Having a camera does not mean that you have
vision.” [8]. A camera gives you GDWD; what you want
is LQIRUPDWLRQ. In order to get information out of data,
you need to interpret the TXDQWLWDWLYH values into
TXDOLWDWLYH values. Humans do it all the time:
consciously we are not bothered with which
perceptrons in our eyes that fire, and which that do
not; eventually our brain is just rendered the
information “this is dad”.

Teaching a new dog old tricks – the Assumption
Architecture

Jakob Fredslund



”Perception [is] knowing what in the environment is
relevantly the case” [12]. 5HOHYDQW means with respect
to some objective, and if we know that the two light
reflection sensors underneath the robot will be used
for detecting lines, then the absolute values of the two
sensors are unimportant. The absolute values are data;
the information we want is whether or not there is a
line. On these two levels of abstraction the search

spaces are 99 ×  versus { HGJH, OHIW�ERXQGDU\�RI

HGJH, ULJKW�ERXQGDU\�RI�HGJH� QR�HGJH },

respectively, where 9 is the set of possible values of
the sensor. Doing this abstraction in a pre-processing
sensor module, instead of forcing the learning
algorithm itself to do it, results in a huge reduction of
the search space. The learning can be based on a much
more precise and succinct sensor signal

The sensors of Mr. Mind can naturally be divided into
three groups: four bumper sensors (one on each side),
two reflection sensors (underneath), and two ambient
light sensors. Within each group, the sensors measure
the same aspect of the environment, analogously to the
human senses that also use several sensors: e.g. two
eyes for the vision sense. A 'wrapper' is attached to
each group of sensors; the wrapper is a small module
that pre-processes the raw input sensor data and
outputs relevant information in the form of a single
integer value. A group of sensors and the associated
wrapper together constitute a VHQVH�

This modularity increases learning speed due to the
reduction of the search space, and it is also a way of
achieving decentralisation. (In [6] a similar, modular
and decentralised way of structuring sensor input is
presented). Further, an easier transfer from simulation
to reality might be expected; the senses can be made
robust by letting them focus on GLIIHUHQFH or change of
sensor values rather than absolute values. Thus, it does
not matter that the reflection sensors show (23, 81) in
the simulator and (69, 148) in the real world if the
value returned by the reflection sense is simply +1 (for
ULJKW�ERXQGDU\�RI�HGJH) when the right sensor value is
significantly greater than the left one. Also, this makes
the simulator much simpler since there is no need to
model real world values very accurately.

Mr. Mind has four actions: IRUZDUG, EDFNZDUG��OHIW,
ULJKW. Each is a wrapper around low level motor
commands; e.g. OHIW is to go forward on one motor and
backward on the other with certain fixed time and
speed parameters.  Thus we can talk about perception
and action rather than of sensor values and motor
commands – i.e. on a higher level of abstraction.

%�� $VVXPSWLRQV

Say that the trainer keeps giving K for a while (being
‘neutral’), and then the first positive feedback J is
given after a ULJKW. There might be dozens of reasons
for the J. Mr. Mind has no chance of knowing the

reason before he has more experience to judge from,
so he assumes for the time being that ULJKW is DOZD\V
good. This is probably not true, but, for all he knows,
it could be. And indeed, if the trainer never gives a L
following a ULJKW, it might actually be the case that
ULJKW is always good and the task is “turn on the spot”.
Thus, the DVVXPSWLRQ ”ULJKW is always good” is
created. All assumptions are on the form

DFWLRQ  is good/bad if FRQGLWLRQ

The assumptions are formed from a list of applicable
DVVXPSWLRQ�W\SHV ordered by simplicity, the simplest
one being the ‘always’-one (where the condition is
just TRUE). The given list of assumption types
defines explicitly the kinds of stimuli/response-
connections Mr. Mind can comprehend. The
assumption types are divided into classes. Class 0
(referred to as 0A) consists of those types whose
conditions involve no more than the current time step.
The ‘good’ ones are (the ‘bad’ ones are analogous):

0A0: DFWLRQ  is always good

0A1: DFWLRQ  is good if VHQVH QFRQGLWLR

0A2: D  is good if 1FV  AND 2FV

0A3: D  is good if 1FV  AND 2FV  AND 3FV

(‘a’ is short for action, ‘sc’ for sense condition, i.e., a
condition on one of the senses, like “light sense is 3”).

These types correspond to direct sensory-motor
connections. The behaviour of the simplest
Braitenberg-creatures [2] could be expressed with
assumptions of class 0A. The next class, 1A, consists
of those types that involve the action taken in the
previous time step, e.g.

1A0: 1D  is good if the previous action was 2D

Similarly, class 2A is the class of types involving the
action taken two time steps before, e.g.:

2A0: 1D is good if second-to-last action was 2D

Currently, no more than these assumption types have
been implemented; of course the <VHQVH�FRQGLWLRQ>-
types (0A1, 0A2, and 0A3) could be adapted to fit in
classes 1A and 2A as well; for example, one could
imagine an assumption like

DFWLRQ  is good if VHQVH QFRQGLWLR  was true in

the previous time step

Now, whenever a new,�OLYH assumption is instantiated
from one of these types, it is associated with a unique
ID and the time step where it was created, its FUHDWRU.



If, in later time steps, further trainer feedback supports
the assumption, these time steps are also associated
with it as VXEVWDQWLDWRUV, much like in Truth
Maintenance Systems where each item of knowledge
has a list of other items that support belief in it.

Now imagine that the task is not “turn on the spot” but
instead “follow the light”, and that the first ULJKW was
good since at that time the light source was to the right
of Mr. Mind. Now, however, it is to the left, and
therefore the next ULJKW is followed by L. Since ULJKW
can no longer be assumed “always good”, the
assumption ”ULJKW is always good” is UHIXWHG and new
ones have to be formed that are consistent with respect
to both the J, and the L.

In fact, the assumption is not discarded,
rather it is UHILQHG: it turned out to be
too general, but still, apparently there
DUH cases where ULJKW is�good, and a
new assumption about the nature of
these cases is then formed, involving
the light sense. Additionally, an
assumption about the cases where ULJKW
is QRW good is formed. This is illustrated
in figure 2. More feedback might result
in further refining of assumptions.
When an assumption is refuted, it will
be replaced by one of higher type, i.e. a
more specialised one. Much like in the

game of Master Mind,
the robot tries to find
the hidden pattern in the
trainer’s feedback;
hence the name Mister
Mind.
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A principle of VLJQLILFDQFH�RI�DOO�IHHGEDFN is adopted
in order to fully exploit the trainer feedback (since Mr.
Mind takes one action and then waits for the trainer to
react with J, L, or K before taking the next action,
the trainer does not risk ‘being late’ with the feedback
accidentally rewarding the wrong action). After each
non-neutral feedback, several things can happen:
either (1) a live assumption is substantiated, or (2) a
new assumption is formed. Further, (3) a live
assumption can be refuted and subsequently refined.
All J and L are considered significant in the sense
that, since no inconsistencies are allowed, a single L
can have substantial impact on the live assumptions.
In other words, the trainer is taken very seriously. The
learning system relies on these two invariants:

• Inv1: After each time step, the live assumptions
are consistent with the history.

• Inv2: Each time step where J or L occurred is
represented exactly once in an assumption as
either a creator or a substantiator.

This is an example of an assumption from an actual
run (the parenthesised prefix is its ID and type):

 (2, 0A1) ULJKW is good if bumper sense is 3
(creator/substantiators: 32 41 46)

This assumption, call it 2$ , was created in time step

32 following a J. In time steps 41 and 46, the bumper

sense was also 3 (i.e., the condition of 2$ was true),

Mr. Mind took a ULJKW, and the trainer gave J, exactly

as in time step 32 (and as 2$  predicted). Assumptions

whose conditions are true are said to be IXOILOOHG; thus

2$ �was fulfilled in time steps 41 and 46, and their

J’s substantiated 2$ . By Inv2, the time steps 32, 41,

and 46 are not associated with any other assumption.

Now, when 2$  was created in time step 32, first the

“always” type, 0A0, was tried, but that somehow
proved inconsistent with the history. Hence, it was
refined to one of type 0A1. When an 0A1-assumption
is created, the bumper sense, the reflection sense, and
the light sense are tried successively as the WULJJHULQJ
sense. In this example, no evidence was found that the
bumper sense value 3 of time step 32 was not the
reason for the J, and so the bumper sense was used
with the value 3 to create the assumption “ULJKW is
good if bumper sense is 3”.

Say that in time step 54, the bumper sense is again 3
and Mr. Mind takes a ULJKW. And then suddenly a L

results. Now 2$ is refuted and to keep with Inv1, its

creator and substantiators will have to be re-treated.
The creator, 32, may give rise to a refined assumption
of type 0A2, but the former substantiatiors do not

necessarily substantiate this new version of 2$ .

Imagine that incidentally in both time steps 41 and 46,
the light sense was 1 at the same time as the bumper
sense being 3 (cf. fig. 3). Imagine that the trainer did
in fact QRW reward the ULJKW-actions in time steps 41
and 46 because of the bumper sense being 3, but

because the light sense was 1. Since 2$  was created

time
step

bumper
sense

reflection
sense

light
sense

action trainer
feedback

32 3 1 1 ULJKW J

41 3 0 1 ULJKW J

46 3 0 1 ULJKW J

54 3 0 2 ULJKW L
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in time step 32 already, the J’s of time steps 41 and

46 were then regarded as substantiating 2$ , since the

bumper sense was in fact 3, even though the J’s were
given for another reason. This reason is not discovered

until�time step 54 when 2$  is refuted. Then, 41 gives
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rise to a new assumption: An 0A1-assumption is tried,
first with the bumper sense as the triggering sense, but
this proves inconsistent because of the L of time step
54. Next, the reflection sense is up, but this also fails
due to time step 54. At last the light sense is tried, and
this works out since the light sense was 1 in time step

41 but 2 in 54. Thus, the new assumption� 3$ , “ULJKW

is good if light sense is 1”, is created, and
subsequently 46 is recognised as substantiating it.

Finally, 4$ , “ULJKW is bad if light sense is 2”, is

formed with creator 54.

When an assumption is refuted, Mr. Mind will not
take the next action until its creator and substantiators
have been treated, thus restoring Inv1. If it turns out
that no new assumption can be consistently created,
the trainer has given inconsistent feedback. Because of
the principle of significance of all feedback a training
mistake is a potentially serious situation. Either the
trainer made a plain mistake, or (s)he wants Mr. Mind
to learn a quibbling connection between sense values
and action that cannot be expressed by any of the
given assumption types – a case of ‘ethnocentric
oversight’ where the human forgets about the
capabilities of the robot. From Mr. Mind’s point of
view, there is no way of telling the difference.

Either way, something has to be done. One
possibility would be to IRUJHW: to pretend it never
happened and go on leaving an inconsistency behind,
but that would violate Inv1. Instead, Mr. Mind will
IRUJLYH his trainer and ignore the feedback of one time

step to restore consistency. Say that 4$  from the

above example is refuted in time step 74, and that its
creator 54 fails to give rise to a new assumption.
Ignoring (the feedback of) time step 54 will clear

things up: 4$  is deleted and Inv1 is restored. In this

case, however, Mr. Mind is forced to ask himself an
existential question: “When this was wrong, why
should everything else I believe in be right?” The
supposedly erroneous feedback of time step 54
influenced the refutation of other assumptions.
Therefore a whole new set of assumptions is created
from scratch by going through all feedback in history.

If, after time step 54, 4$  had been substantiated by

several more time steps that also could not give rise to
new assumptions (or substantiate existing ones) after

the refutation of 4$  all these time steps would have to

be ignored to restore consistency. In other words, the
trainer must then have made several mistakes rather
than just one. There is no way of knowing whether
this is actually the case, but due to Inv1 there was
consistency immediately before the latest time step 74,
and so ignoring just 74 will also restore consistency.
And this is what is done: if only one earlier time step
cannot be re-treated, ignore it. If more than one cause
problems, ignore instead the latest time step.

After analysing the trainer feedback, Mr. Mind assigns
weights to the actions and picks one probabilistically.
All fulfilled assumptions can be ‘put to the test’: if,

e.g., the light sense is 1 then the assumption 3$ ,

“ULJKW is good if light sense is 1”, is fulfilled. Doing a
ULJKW would therefore leave the trainer with the chance

of refuting or substantiating further� 3$ . This is

reflected by increasing the weight of ULJKW by the total
number of time steps supporting it. That is, the more it
previously proved a good idea, the higher the chance
of doing it again. For fulfilled “bad”-assumptions,
weight is subtracted.

A FRQIOLFW is a situation where two fulfilled
assumptions concerning the same action predict
opposite trainer feedback. This does not mean
inconsistency with the history; it just means that the
conditions of the two assumptions have never before
been true simultaneously. For example, the two
assumptions “ULJKW is good if bumper sense is 3” and
“ULJKW is bad if light sense is 1” could very well
temporarily co-exist. If a situation arises where the
bumper sense is 3 and the light sense is 1, these
assumptions cannot both be correct. Such situations
are LQWHUHVWLQJ [8] in that Mr. Mind is sure to increase
his knowledge if (1) he takes the action concerned
(and so he does), and (2) the trainer gives feedback,
because then one of the assumptions will be refuted
and subsequently refined, while the other will be
substantiated. Further, the trainer has the possibility of
positioning Mr. Mind on the interesting places on the
arena in order to let him discover the essence of the
task more quickly; e.g. by placing him close to the line
when the task is line following.

Given that the trainer is trying to teach Mr. Mind
something that can be expressed with the list of
assumption types, given that there is no simpler
explanation that is consistent with history, and given
that no inconsistent training occurs, then Mr. Mind
will eventually find the right assumptions that account
for the trainer’s feedback: due to the invariants, at all
times the set of live assumptions can account for the
trainer feedback seen so far. To refine this set into a
final set of assumptions, Mr. Mind must experience
the cases that distinguish this set from the final set. If
the trainer gives correct feedback in these cases, a set
of assumptions that solve the task will be found.

'�� ([SHULPHQWV

The generality of the assumption types was
demonstrated in a number of different experiments,
one of which was also done with a physical robot. The
first experiment was simple line following (cf. fig. 4).
Within 40 time steps, Mr. Mind had learned several
assumptions, including:

(0, 0A1) IRUZDUG is good if reflection sense is 0
(4, 0A1) ULJKW is good if reflection sense is 1



(6, 0A1) OHIW is good if reflection sense is 2

(where the values of 0, 1, and 2 mean “QR�HGJH”,
“HGJH��GDUN�VLGH�WR�WKH�ULJKW”, and “HGJH��GDUN�VLGH�WR
WKH�OHIW”, respectively), corresponding to the rules that
were also used in [10]:

1) If you see (x, x) go forward
2) If you see (bright, dark) turn right
3) If you see (dark, bright) turn left

Recall that initially there is no indication anywhere of
the task that Mr. Mind is supposed to learn. These
assumptions were the simplest ones that matched the
feedback – and the reflection sense turned out to be
the triggering sense in this task.

Now, the reflection sense throws away the DEVROXWH,
quantitative values of the reflection sensors and
focuses instead on the GLIIHUHQFH between the two
sensors to produce the qualitative edge/no edge
values. This enables Mr. Mind with the VDPH

assumptions to follow lines of other colours and even
lines where the colour changes along the way.
Light seeking and obstacle evasion1 (also using
assumption 0A1 but with other triggering senses), and
zigzagging (turn left, go forward, right, forward, left,
etc.; i.e. it is necessary to look two time steps back)
were also successfully learned in simulation. But for a
simulated phase to be meaningful prior to the actual,
situated phase, the transfer from simulation to reality
should be fairly painless in terms of loss of
performance. Here, the idea is to train the robot in the
simulator and have it produce some assumptions.
Then the ‘JRRG’-assumptions would be compiled into
rules and downloaded to a LEGO-robot. This was
tried with one task: “Go straight until hitting a wall,
then turn and go toward the light”. A LEGO robot was
built using light and bumper sensors and a LEGO
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Mindstorms RCX computer2, and within 2 minutes the
robot performed the same task in reality as it had done
in simulation; the only parameter that had to be
adjusted was the threshold for ‘significant difference’
between the two ambient light sensors.

It is not crucial that the ULJKW-action of the physical
robot corresponds exactly to the ULJKW-action of the
virtual robot. What matters is that the action is an in-
place right turn that is appropriately small. Of course,
one has to bear in mind that having trained the
simulated robot to, e.g., follow a specific line does not
necessarily imply that the real robot will be able to
follow a physical copy of the simulated line; it just
means that the physical robot, having learned the basic
line following rules, will be able to follow some class
of lines, a class whose defining characteristics are not
directly retrievable but are related to for example the
timing constants of the actions, the placement of the
wheels and so on. However, since for all choices of
constants etc. there will always be lines that the robot
will be unable to follow, there is no real harm done in
making the choices arbitrarily, as long as you are not
interested in one particular line only.

III. RELATED WORK

As our assumptions, the classifiers of the learning
system ALECSYS [4] are also condition-action rules,
each with a “strength” that decides the probability of
the rule being executed. However, in the Assumption
Architecture the picture is more black and white;
contradictory assumptions are not allowed, only one
possible explanation for the feedback is upheld.
Hence, useless assumptions are discovered quickly
and do not delay learning. The price is that the trainer
is expected to give predominantly correct feedback.

Another way of looking at the assumptions is to view
them as predictors of feedback, composed by
predicates over sense values and actions. In [11] an
interesting system is described where chains of
behaviours are formed by means of such predictors;
one crucial point is the ability of stimuli to function
also as conditioned reinforcers. This is an idea that we
would like to take up in future work to facilitate
sequential behaviour. Currently it is not possible for
Mr. Mind to learn more than one (sub) task at a time.

Meant for a different and more complex ecological
niche, the Hamsterdam toolkit of [1] still bears some
resemblance to our system. Blumberg, Todd, and
Maes have employed ‘releasing mechanisms’,
dedicated filters that monitor the sensors for certain
features of the environment. This is what our senses
would look like if carried to a higher level of
complexity. Further, so-called ‘discovery groups’ are
formed so that multiple possible explanations for

                                                          
2 An RCX has a Hitachi H8/300 CPU and 32K RAM, three
input and three output ports. www.legomindstorms.com.
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reinforcement are checked simultaneously. In our
system, as described, only one explanation is checked
at a time, and this is upheld as long as it is consistent.

If the trainer and the designer are not necessarily the
same person, the flexibility of training versus environ-
ment reinforcement [5] is desirable. Our system is
general and lets the trainer teach Mr. Mind any simple
task expressible as associations between stimuli and
action. Our hope is that in providing only the generic
assumption types, and not a fixed set of learnable
tasks that the trainer essentially chooses from as in [7],
more is left to the imagination of the trainer.

IV. CONCLUSIONS

In this work, we have taken as a starting point the
HFRORJLFDO�QLFKH of simplistic LEGO robots and built a
learning system using binary training. Acknowledging
the principle of ecological balance [9], the tasks
considered are also quite simple. In structuring the
sensors in pre-processing VHQVHV interpreting data into
information, we achieve decentralisation, abstraction,
and fast learning. Also, the senses assisted in an easy
transfer from simulation to reality. For such simple
tasks that can come into consideration for LEGO
robots, appropriate wrappers are typically easy to
write. Of course, focusing on some aspects of the
available sensor data is ignoring other aspects. A sense
is aimed at a certain set of tasks. If the task is not line
following but “stay on the blue spot”, for example,
then the current wrapper will not be very helpful. One
therefore might write a pre-determined set of wrappers
(and you do not have that many ways of using simple
sensors), so that the appropriate senses could be
chosen prior to each training session.

Forming assumptions about successful behaviour is a
way of structuring experience. Humans might call it
abstraction: instead of remembering all the hundreds
of individual instances of cats seen so far, one forms
the concept of “a cat” based on the similarities of the
instances. Once in a while, one might have to refine
this concept due to new and atypical instances – but
still the concept of “cat” is valuable. Likewise with
our robot: some assumptions might prove false, but
even so they guide the robot toward more feedback
and hence more precise assumptions. Further, we feel
that it is a very nice feature to be able to follow the
robot’s behaviour: with explicit assumptions you can
tell why it’s doing what it’s doing.

In the ecological niche studied here, it is possible to
teach a robot various tasks by saying only JRRG! and
EDG! to it. This kind of binary training is immediately
understandable, also for children. The robot learned
each task within 10 minutes, mostly within 3. We
adopted a principle of VLJQLILFDQFH�RI�DOO�IHHGEDFN, and
this probably has strong influence on the fast learning.
Synchronisation of feedback and action made the job
easier for the trainer, and so the only training

problems are caused by genuine mistakes or by
HWKQRFHQWULF�RYHUVLJKW, where the trainer forgets that
robots do not have the capabilities that our own kind
does.

V. FUTURE WORK

The training could take place entirely in reality so that
the trainer would interact with the robot via a remote
control (as described in [11]) or a speech recognition
module. Such situated learning would enhance the
notion of an autonomous, live creature that especially
children like, but it would also introduce challenges:
the synchronisation would be less than trivial to keep
with noisy IR-communication, and the robot might
have to transmit its sense values for the trainer to see.
Further, more assumption types are easily imaginable,
e.g. incorporating some form of state.
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